11 research outputs found

    Conception, fabrication, caractérisation et modélisation de transistors MOSFET haute tension en technologie avancée SOI (Silicon-On-Insulator)

    Get PDF
    Nowadays the scaling of bulk silicon CMOS technologies is reaching physical limits. In this context, the FDSOI technology (fully depleted silicon-on-insulator) becomes an alternative for the industry because of its superior performances. The use of an ultra-thin SOI substrate provides an improvement of the MOSFETs behaviour and guarantees their electrostatic integrity for devices of 28nm and below. The development of high-voltage applications such DC/DC converters, voltage regulators and power amplifiers become necessary to integrate new functionalities in the technology. However, the standard devices are not designed to handle such high voltages. To overcome this limitation, this work is focused on the design of a high voltage MOSFET in FDSOI. Through simulations and electrical characterizations, we are exploring several solutions such as the hybridization of the SOI substrate (local opening of the buried oxide) or the implementation in the silicon film. An innovative architecture on SOI, the Dual Ground Plane EDMOS, is proposed, characterized and modelled. It relies on the biasing of a dedicated ground plane introduced below the device to offer promising RON.S/BV trade-off for the targeted applications.A l’heure où la miniaturisation des technologies CMOS sur substrat massif atteint des limites, la technologie FDSOI (silicium sur isolant totalement déserté) s’impose comme une alternative pour l’industrie en raison de ses meilleures performances. Dans cette technologie, l’utilisation d’un substrat SOI ultramince améliore le comportement des transistors MOSFETs et garantit leur intégrité électrostatique pour des dimensions en deçà de 28nm. Afin de lui intégrer de nouvelles fonctionnalités, il devient nécessaire de développer des applications dites « haute tension » comme les convertisseurs DC/DC, les régulateurs de tension ou encore les amplificateurs de puissance. Cependant les composants standards de la technologie CMOS ne sont pas capables de fonctionner sous les hautes tensions requises. Pour répondre à cette limitation, ces travaux portent sur le développement et l’étude de transistors MOS haute tension en technologie FDSOI. Plusieurs solutions sont étudiées à l’aide de simulations numériques et de caractérisations électriques : l’hybridation du substrat (gravure localisée de l’oxyde enterré) et la transposition sur le film mince. Une architecture innovante sur SOI, le Dual Gound Plane EDMOS, est alors proposée, caractérisée et modélisée. Cette architecture repose sur la polarisation d’une seconde grille arrière pour offrir un compromis RON.S/BV prometteur pour les applications visées

    Conception, realization, characterization and modeling of High Voltage MOSFETs transistors in advanced SOI (silicon on insulator) technologies

    No full text
    A l’heure où la miniaturisation des technologies CMOS sur substrat massif atteint des limites, la technologie FDSOI (silicium sur isolant totalement déserté) s’impose comme une alternative pour l’industrie en raison de ses meilleures performances. Dans cette technologie, l’utilisation d’un substrat SOI ultramince améliore le comportement des transistors MOSFETs et garantit leur intégrité électrostatique pour des dimensions en deçà de 28nm. Afin de lui intégrer de nouvelles fonctionnalités, il devient nécessaire de développer des applications dites « haute tension » comme les convertisseurs DC/DC, les régulateurs de tension ou encore les amplificateurs de puissance. Cependant les composants standards de la technologie CMOS ne sont pas capables de fonctionner sous les hautes tensions requises. Pour répondre à cette limitation, ces travaux portent sur le développement et l’étude de transistors MOS haute tension en technologie FDSOI. Plusieurs solutions sont étudiées à l’aide de simulations numériques et de caractérisations électriques : l’hybridation du substrat (gravure localisée de l’oxyde enterré) et la transposition sur le film mince. Une architecture innovante sur SOI, le Dual Gound Plane EDMOS, est alors proposée, caractérisée et modélisée. Cette architecture repose sur la polarisation d’une seconde grille arrière pour offrir un compromis RON.S/BV prometteur pour les applications visées.Nowadays the scaling of bulk silicon CMOS technologies is reaching physical limits. In this context, the FDSOI technology (fully depleted silicon-on-insulator) becomes an alternative for the industry because of its superior performances. The use of an ultra-thin SOI substrate provides an improvement of the MOSFETs behaviour and guarantees their electrostatic integrity for devices of 28nm and below. The development of high-voltage applications such DC/DC converters, voltage regulators and power amplifiers become necessary to integrate new functionalities in the technology. However, the standard devices are not designed to handle such high voltages. To overcome this limitation, this work is focused on the design of a high voltage MOSFET in FDSOI. Through simulations and electrical characterizations, we are exploring several solutions such as the hybridization of the SOI substrate (local opening of the buried oxide) or the implementation in the silicon film. An innovative architecture on SOI, the Dual Ground Plane EDMOS, is proposed, characterized and modelled. It relies on the biasing of a dedicated ground plane introduced below the device to offer promising RON.S/BV trade-off for the targeted applications

    Conception, realization, characterization and modeling of High Voltage MOSFETs transistors in advanced SOI (silicon on insulator) technologies

    Get PDF
    A l’heure où la miniaturisation des technologies CMOS sur substrat massif atteint des limites, la technologie FDSOI (silicium sur isolant totalement déserté) s’impose comme une alternative pour l’industrie en raison de ses meilleures performances. Dans cette technologie, l’utilisation d’un substrat SOI ultramince améliore le comportement des transistors MOSFETs et garantit leur intégrité électrostatique pour des dimensions en deçà de 28nm. Afin de lui intégrer de nouvelles fonctionnalités, il devient nécessaire de développer des applications dites « haute tension » comme les convertisseurs DC/DC, les régulateurs de tension ou encore les amplificateurs de puissance. Cependant les composants standards de la technologie CMOS ne sont pas capables de fonctionner sous les hautes tensions requises. Pour répondre à cette limitation, ces travaux portent sur le développement et l’étude de transistors MOS haute tension en technologie FDSOI. Plusieurs solutions sont étudiées à l’aide de simulations numériques et de caractérisations électriques : l’hybridation du substrat (gravure localisée de l’oxyde enterré) et la transposition sur le film mince. Une architecture innovante sur SOI, le Dual Gound Plane EDMOS, est alors proposée, caractérisée et modélisée. Cette architecture repose sur la polarisation d’une seconde grille arrière pour offrir un compromis RON.S/BV prometteur pour les applications visées.Nowadays the scaling of bulk silicon CMOS technologies is reaching physical limits. In this context, the FDSOI technology (fully depleted silicon-on-insulator) becomes an alternative for the industry because of its superior performances. The use of an ultra-thin SOI substrate provides an improvement of the MOSFETs behaviour and guarantees their electrostatic integrity for devices of 28nm and below. The development of high-voltage applications such DC/DC converters, voltage regulators and power amplifiers become necessary to integrate new functionalities in the technology. However, the standard devices are not designed to handle such high voltages. To overcome this limitation, this work is focused on the design of a high voltage MOSFET in FDSOI. Through simulations and electrical characterizations, we are exploring several solutions such as the hybridization of the SOI substrate (local opening of the buried oxide) or the implementation in the silicon film. An innovative architecture on SOI, the Dual Ground Plane EDMOS, is proposed, characterized and modelled. It relies on the biasing of a dedicated ground plane introduced below the device to offer promising RON.S/BV trade-off for the targeted applications

    Dual Ground Plane EDMOS in ultrathin FDSOI for 5V energy management applications

    No full text
    session A7L-G: Avanced Devices from Si to Wide-BandgapInternational audienceA promising high-voltage MOSFET (HVMOS) in Ultra-Thin Body and Buried oxide Fully Depleted SOI technology (UTBB-FDSOI) is experimentally demonstrated. The Dual Ground Plane Extended-Drain MOSFET (DGP EDMOS) architecture uses the back-gate biasing as an efficient lever to optimize high-voltage performances. We show that the separated biasing of the two ground planes enables independent control of the channel and drift regions. Electrical characteristics such as specific on-resistance/breakdown trade-off as a function of the back-gate voltage and geometry are explored. We present and discuss encouraging results for 5V switched mode applications for energy management

    Dual Ground Plane EDMOS in 28nm FDSOI for 5V power management applications

    No full text
    International audienceA promising high-voltage MOSFET (HVMOS) is experimentally demonstrated in 28 nm Ultra-Thin Body and Buried oxide Fully Depleted SOI technology (UTBB–FDSOI). The Dual Ground Plane Extended-Drain MOSFET (DGP EDMOS) architecture uses the back-gate biasing as an efficient lever to optimize high-voltage performances. The idea is to implement two different ground planes under the device to control separately the electrostatic properties of the channel and the drift regions. We show that the separate biasing of the two ground planes enables the independent tuning of the threshold voltage (VTH) as well as the improvement of drain–source breakdown voltage (BV) and specific on-resistance (RON.S). In this work, we explore the electrical characteristics, such as RON.S and BV, as a function of the back-gate voltage and geometry. We report and discuss encouraging results for 5 V switched mode applications and power management in ultra-thin SOI technology

    Dual ground plane for high-voltage MOSFET in UTBB FDSOI Technology

    No full text
    International audienceFor the first time, the investigation of a high-voltage MOSFET (HVMOS) in Ultra-Thin Body and Buried oxide Fully Depleted technology (UTBB-FDSOI) is reported. Lateral electric field profile and related breakdown voltage behavior are studied through TCAD simulations. To improve breakdown voltage, an original dual ground plane architecture is proposed and preliminary characterization results are presented

    EDMOS in ultrathin FDSOI: Impact of the drift region properties

    No full text
    International audienceThe development of high-voltage MOSFET (HVMOS) is necessary for including power management or radiofrequency functionalities in CMOS technology. In this paper, we investigate the fabrication and optimization of an Extended Drain MOSFET (EDMOS) directly integrated in the ultra-thin SOI film (7 nm) of the 28 nm FDSOI CMOS technology node. Thanks to TCAD simulations, we analyse in detail the device behaviour as a function of the doping level and length of the drift region. The influence of the back-plane doping type and of the back-biasing schemes is discussed. DC measurements of fabricated EDMOS samples reveal promising performances in particular in terms of specific on-resistance versus breakdown voltage trade-off. The experimental results indicate that, even in an ultrathin film, the engineering of the drift region could be a lever to obtain integrated HVMOS (3.3–5 V)

    EDMOS in ultrathin FDSOI: Effect of doping and layout of the drift region

    No full text
    session A7L-F: Innovation Approaches for Opto and Power DevicesInternational audienceWe have already demonstrated the fabrication of a Dual-Ground Plane Extended Drain MOSFET with 28nm FDSOI technology. The detrimental consequences of ultrathin SOI film were mitigated by back-biasing the ground planes. In this paper, we explore for the first time the device optimization in 28 nm FDSOI node by doping the drift region. This solution requires additional and dedicated process steps but is free from back-biasing schemes. Following TCAD simulations, devices have been designed and fabricated with UTBB-FDSOI technology. DC measurements indicate that even in ultrathin film (7 nm) the doping of drift region is still a lever for achieving high-voltage (5V) MOSFET with promising performance

    Towards High-Voltage MOSFETs in Ultrathin FDSOI

    No full text
    61-81International audienceHigh-Voltage MOSFETs are essential devices for complementing and extending the domains of application of any core technology including low-power, low-voltage CMOS. In this paper, we propose and describe advanced Extended-Drain MOSFETs, designed, processed and characterized in ultrathin body and buried oxide Fully Depleted Silicon on Insulator technology (UTBB-FDSOI). These transistors have been implemented in two technology nodes (28 nm and 14 nm) with different silicon film and buried oxide thicknesses (TSi < 10nm and TBOX ≤ 25nm). Our innovative concept of Dual Ground Plane (DGP) provides RESURF-like effect (reduced surface field) and offers additional flexibility for HVMOS integration directly in the ultrathin film of the FDSOI wafer. In this configuration, the primary back-gate controls the threshold voltage (VTH) to ensure performance and low leakage current. The second back-gate, located underneath the drift region, acts as a field plate enabling the improvement of the ON resistance (RON) and breakdown voltage (BV). The tradeoff RON.S versus BV is investigated as a function of doping level, length and thickness of the drift region. We report promising results and discuss further developments for successful integration of high-voltage MOSFETs in ultrathin CMOS FDSOI technology
    corecore